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Abstract 

This paper deals with the Papapetrou-Pirani equations of motion for a spinning test 
particle in general relativity. The motion of the center of mass can be represented by 
the geodesic equation of an affine connection that is the sum of the Christoffel 
connection and a tensor that depends on the Riemann-Christoffel curvature tensor, 
the mass of the particle, its 4-velocity, and its spin tensor. The connection is not unique, 
and here it is chosen to satisfy one of the basic geometrical principles of Einstein's 
unified field theory: The symmetric part of the fundamental tensor of the geometry is 
specified to be the metric tensor of general relativity. The special case of conformally flat 
space-times is discussed. 

1. Introduction 

In view of the difficulties that have been experienced in attempts to obtain 
unified field theories, it appears to be worthwhile pursuing the less ambitious 
approach of attempting to write known equations in a more unified form. In 
particular, one of the major problems with Einstein's unified field theory has 
been that of establishing the physical interpretations of the mathematical 
quantities involved; expressing equations of general relativity in terms of 
Einstein's non-Riemannian geometry might provide information as to what inter- 
pretations are possible. 

The generally covariant equation of motion of a test charge in an external 
electromagnetic field, with radiation reaction neglected, has been written as the 
equations of geodesics in four-dimensional Finsler space, in five-dimensional 
Pdemannian space (Sen, 1968, p. 85), and in a six-dimensional non-Riemannian 
space (Bown, 1970). It has also been expressed as the geodesic equation of an 
affine connection within a four-dimensional space-time having the usual 
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Riemannian metric (Droz-Vincent, 1967); the connection is the sum of the 
Christoffel connection and a third-rank tensor that depends on the electro- 
magnetic field and on the 4-velocity mad charge-to-mass ratio of the particle. 
The connection is not unique, there being a class of connections having the 
same geodesics; it can be chosen so that the covariant derivative of the metric 
tensor with respect to the connection vanishes (Droz-Vincent, t 967), which 
property is preserved if any further skew part giving no contribution to the 
torsion vector is added to it. The connection can instead be chosen (Burman, 
197 la, 197 lb) to be an Einstein connection-a connection satisfying one of 
the basic geometrical principles of the nonsymmetric unified field theory 
developed by Einstein, Schr6dinger, and others, namely, the condition relating 
the connection to the nonsymmetric fundamental tensor. An alternative 
condition can be imposed (Burman, 1971a), namely, the vanishing of the 
covariant derivative, with respect to the connection, of the nonsymmetric 
fundamental tensor. 

A considerable amount of work has been done on the relation between 
spin and torsion (e.g., Hehl, 1973), In particular, Sciama (1958a, 1958b, 
1961, 1962, 1964) has suggested that Einstein's unified theory is a unification 
of gravitation and spin. In view of this, it is of interest to express the motion of 
a spinning particle in general relativity as the geodesic equation of an Einstein 
connection. 

2. Basic Theory 

In general relativity matter can be described by an energy-momentum tensor 
or by singularities in the field with the empty-space field equations applicable 
outside the singularities (Bondi, 1959). With the former description it is easily 
shown that the equation of motion of incoherent matter follows from the field 
equations; in the absence of nongravitational fields the particles follow 
geodesics of the Riemannian space of general relativity; in particular, this 
result applies to a single test particle, as is seen by taking the density to be 
proportional to a delta function (Sen, 1961; 1968 p. 20). Einstein, Infeld, and 
Hoffman derived the equations of motion of gravitating particles in their total 
gravitational field by using the second description (Infeld and Plebafiski, 1960); 
they dealt with bodies having comparable masses and moving slowly compared 
with light. A different method, introduced by Fock (t964, ch. 6) and developed 
by Papapetrou (1951 a), brings the interiors of the bodies into account; it uses 
the field equations and the condition that the covariant divergence of the energy- 
momentum tensor of a body vanishes. On being applied to the simplest kind of 
test particle, both methods show the path to be a geodesic. 

The second method was used by Papapetrou (195 lb) to investigate the motion 
of a spinning test particle in the absence of nongravitational fields; the particle is 
an elementary torque-free gyroscope. Equations of motion for its center of mass 
and for its internal angular momentum or spin tensor (S ~ )  were obtained and 
expressed in covariant form. These equations are not sufficient to determine all 
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unknowns: There are three equations of motion for the six independent components 
of the skew.symmetric spin tensor. Some conditions must be imposed on the 
S ~, and Pirani (1956) suggested taking 

u~s ~ = 0 (2.1) 

which will be adopted here. 
Consider the four-dimensional Riemannian space-time of general relativity 

with x a the coordinates and ds the interval: ds 2 = guvdxUdx v where (&w) is the 
metric tensor. The speed of light in empty space will be put equal to unity. A 
particle with mass rn is at (x ~) and has 4-velocity (u u) =- (dxU/ds). With (2.1), 
Papapetrou's equations combine to show that rn is a constant of the motion and 
to give 

rnitU = - ( SUv + ½ R U~ooS°°) uv (2.2) 

where a dot denotes total covariant differentiation following the world-line 
of the particle and (R~uv) is the Riemann-Christoffel curvature tensor. 
Let a comma denote partial differentiation and a semicolon denote covariant 
differentiation with respect to the Christoffet connection. Since i~ u = u**;vu v and 

(2.3) 

where the braces denote the Christoffel symbol of the second kind, (2.2) can 
be expressed in the alternative form 

- -  + - ( 2 . 4 )  

ds 2 ~ ds ds m 2 'Po ] 

3. The Af f ine Connection 

Consider an entity A with components defined by 

Ac~u2 -= +A~t  3 (3.1) 

where (A~U~) is a third-rank tensor. The sum of a connection and a tensor of 
the appropriate type is always a connection, so A is one. Covariant differentia- 
tion with respect to A will be denoted by a stop. Hence 

uVuU.v = uV (uU;v + A~Uvu ~) (3.2) 

Substituting (2.2) into (3.2), it is seen that if ( A ~ )  satisfies 

- (  1RU S p°] u e~ (3.3) Agflu~u# = ml Xtao ~ + 2 ~oo ] 
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then 

u~uU.~ = 0 

Equation (3.4) can be written in the alternative form 

(3.4) 

d2x u dx c~ dx ~ 
- -  + A c f ~  - 0 ( 3 . 5 )  
ds 2 ds ds 

which can be obtained directly by using (3.1) and (3.3) to eliminate the 
Christoffel symbol from (2.4). Equation (3.4) is the equation of the geodesics 
of the affine connection A: The paths of spinning test particles can be described 
by such geodesics. 

From the general expression for a covariant: derivative it follows that 

guv.p = guv;o - Au~,o - Avuo (3.6) 

Hence i f A ~  = - A ~ v ,  then 

gu~.~ = 0 (3.7) 

Equation (3.3) is satisfied if 

1 R u SOa~ (3.8") 
_ 1 ~ +  

Ac~U~u~=-m 2 e  ̀pa ] 

where use has been made of the skew-symmetry of the spin tensor and the 
skew-symmetry of the Riemann-Christoffel tensor in its first two indices. 
Now choose (Ae`U~) to have the form given by 

A~u ~ = Be`Uu~ 

with (B~u) a skew-symmetric second rank tensor; (3.7) is satisfied. Since 
uuu v = 1, the condition (3.8) becomes 

BeU = 1 (~  u + l R  u SpO~ 

thus (Bau) is skew, as required. 
That is, the equation of motion of the center of mass of a spinning test 

particle in general relativity can be expressed in the form of the geodesic 
equation of an affine connection A with components given by 

(3.9) 

(3.10) 

(3.11) 

This connection satisfies the condition guv.;= O. The torsion vector of A is 
given by 

AX -=- A[Xa~I (3.12a) 



SPINNING PARTICLES IN GENERAL RELATIVITY 215 

-1  ( 2 pa~ = 5;at + } ur (3.12b) 

Comparison of (3.12b) with (2.2) shows that the torsion vector is proportional 
to the effective 4-force acting on the particle. Proportionality of  the 4-force with 
the torsion vector of  the relevant connection has also been found for certain 
other equations of  motion when the corresponding affine connections are 
required to satisfy g~v.p = 0, namely, that  for a test particle acted on by a field 
with an energy-momentum tensor (Tuv) satisfying uuTUV;v = 0 (Burman, 1970), 
which includes the case of  a test charge in an electromagnetic field, and that 
for a charged particle when electromagnetic radiation reaction is included (Burman, 
1971c). 

I f  (Vc~) is a vector and (C~U/3) is a tensor that  is skew in its first and last 
indices, then the quantities 

DaU~ = dXc~U~ + 26~a Vt3 ) + C~u~ (3.13) 

form a connection D with the same geodesics as A (Schr6dinger, 1950, p. 55). 
Let a colon denote covariant differentiation with respect to D; in particular, 

guy: p = guv,p - gowDuao - guaD~p (3.141) 

= guv.o - 2guvVp - 2gp(uVv) - 2C(uv)o (3.14b) 

Consider the vector (Ca) given by 

Cc~ - CcJo = - CG°c~ (3.15) 

If  (Cc~ut~) is skew-symmetric in its first two indices, then (Ca) vanishes; if in 
addition (V~) vanishes, then from (3.14b) guv:p = guv.p. The geodesics of  a 
connection are unaffected by its skew part. The connection A defined by (3.11) 
is nonsymmetric,  as it must be for the condition guv.p = 0 to hold: The tensor 
(C~U~) that would cancel with the skew part of  2x has a nonzero associated 
vector (Ca), equal to -(2xe),  and so (3.15) shows that (Cau~)would not be skew 
in its first two indices; it will be shown later that such an addition is not 
admissible. 

A preliminary note covering some of the work presented in this section has 
appeared previously (Burman, 197td).  

4. The Einstein Connection 

4.1. Einsteinian Geometry. Let (guy) now denote a nonsymmetric  tensor 
field, called the fundamental tensor, and write huv for g(uv) and k~v for gluv]" 
Round and square brackets around indices will denote symmetric and skew 
parts taken with respect to the indices immediately inside the brackets. Let 
indices other than those of  the fundamental tensor be raised and lowered by 
using huv and h uv, where the contravariant components h uv are defined by 

h ~ h  xv = 6u u (4.1) 
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The contravariant components gUVof the fundamental tensor are defined by 

gxug xv = guxg uv = 8{  (4.2) 

Compare the conditions 

and 

where 

and 

g.~.p = 0 (4.3) 

gu+~_.p = 0 (4.4) 

gu,,.p =- gu~',o - g~Fu'~p - g ~ P ~ p  (4.5) 

and 

in which F is a nonSymmetric affine connection. The definitions (4.5) and 
(4.6) differ only through the orders of the indices v and p in their last terms. 
Equation (4.4), a basic geometrical principle of the unified field theory 
developed by Einstein and Schr6dinger, has been studied in great detail by 
Hlavat~ (1958); other authors have obtained solutions in various forms. 

It has been shown (Hlavat~,, 1958, p. 58) that the requirements for the 
existence and uniqueness of a solution of (4.4) do not impose any restriction 
in the form of an equation on the components guy" A necessary condition for 
(4.3) to have a solution is that (Hlavat), 1958, p. 48) det(guv)/det(huv ) and 
det(kuv)/det(huv ) must both be constant. Thus the condition (4.4) produces a 
more flexible theory than (4.3). 

Consider a connection P with components written in the form 

= + v",~ e + & p  

where the Christoffel symbols are defined in terms of (buy), (Sat~u) is the 
torsion tensor of P, 

&e~ - r l d e l  (4.8) 

UUc~e =- 2SU (c~Vks) v (4.9) 

It has been shown (HlavatS~, 1958, p. 52) that if (4.4) has a solution P, then it 
must be of the form described by (4.7), (4.8), and (4.9). Equation (4.9) implies 
that (HlavatS~, 1958, p. 62) 

G x .  + uu~x + ux.~  = o (4.10) 

-another  theorem for use below. 

(4.7) 

g.+~_.p ; &,,,p - g~.pu~p - g~,~pp% (4.6) 
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4.2. An Einstein Connection. Since the geodesics of a connection are 
unaffected by a transformation of the form (3.13), it is of interest to attempt 
to find a connection D, related by such a transformation to A defined by (3.11), 
that will satisfy a condition of the type (4.4). The tensor (hvu) is specified to 
be the Riemannian metric tensor of general relativity, so the Christoffel symbols 
in (3.11) and (4.7) are the same and (Ra~uv) denotes the Riemann-Christoffel 
curvature tensor of (buy). It is seen that D can be written in the form given by 
(4.7) with 

U u ~  = B(c, Uu~) + 26(~u V~) (4.11) 

where B~ u is given by (3.10), and with some suitable skew-symmetric tensor 
chosen for (Sa~U). Taking 

Say a = -½Bowel u ( 4 . 1 2 )  

where (L u) is some vector, (4.9), (4.11), and (4.12) give 

B(au(LVk~)v - up)) = 2hu(aV~) (4.13) 

If V# is put equal to zero, (4.13) is satisfied if 

k ~ L  v = u[3 (4.14) 

Taking det(kuv ) to be nonzero, (4.14) implies that 

L ~ = kUau e (4.15) 

where (~uv) is defined by 

kC~°kot~ = 6~ (4 16) 

With V u = 0 and L u given by (4.15), equations (4.11) and (4.12) become 

U •  = B(aUu~) (4.17) 

and 

Sap" = -½ Bc~k, Uauo (4.18) 

So 

Dc~U ~ = ~13 + B(~Uu~) - 1B~i~tcUau a (4.19) 

This has the same symmetric part as A: Only the torsion is different, and that does 
not affect the geodesics. The torsion vector of D is given by 

S~ - &r  r (4.20a) 

= -½Bc~r[Craucr (4.20b) 
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Using (3.10), equations (4.17), (4.18 ), (4.19 ) and (4.20b) become 

-1 
Up3 = __ (~( u + ½R( UpaSPO)u~) (4.21) 

m 

1 .. 
S~  u = 2--~(S~3 + ½ Ro~p~SP°)klarur (4.22) 

D~"~ = 1 (g(a u + ½R(aUooSOO)ue) + ~ (Sap + ~R~o~S )k Ur 
m 

(4.23) 

and 

S~ = 2~ (5;~r + ½Rc~rooSO°)kr3u~ (4.24) 

4.3. Uniqueness. Any tensor with components of the form 28~X5) + TabU, 
where (X~) is a vector and the tensor (T~u) is skew in its fizst two indices, can 
be added to D without affecting its geodesics. But for the resulting affinity to 
satisfy (4.4), the added terms must satisfy an equation of the form of (4.9) and 
hence an equation like (4.10). Substituting 28~X3) for UUa3 in (4.10)leads to 

hx~u + hu~Xx + hxuX~ = 0 

Raising v and then contracting over X and v shows that Xu must vanish. Hence 
(4.9) implies that 

Tu(c~Vk3)v = 0 (4.25) 

So the affinity D given by (4.23) is arbitrary up to the addition of a tensor 
(T~**) which is skew in its first two indices and satisfies (4.25). The condition 
(4.25) has arisen previously, in the problem of the representation of the motion 
of charged particles in electromagnetic fields as geodesics of an Einstein 
connection (Burman, 197 lb). 

Let (HlavatS,, 1958) 

k = det(k~w) (4.26a) 
det(huv) 

K - ¼k~k '~ (4.26b) 

D -- K 2 - k (4.26c) 

(4.26d) 

and 

1 [det(h~3)~U2 xu 
(4.26e) 
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where 7 is the sign of a certain determinant and the indicator (ewuxv) is a totally 
skew tensor density of weight - 1  having the components 1 , - 1 ,  or 0 according 
as the indices form an even permutation, an odd permutation, or no permuta- 
tion of the numbers 1,2, 3, and 4. Following Hlavat) (1958) take (guy) to be 
real and its determinant to be negative; (huv) has the signature (+++-), so 
det(h,v) < 0; (huv) is the metric tensor; (kuv) is not zero. Under these specifica- 
tions, the condition (4.25) has been investigated (Burman, 1972) for the case 
in which k ~ 0. It was found that Tx~ v can be expressed in the form 

where 

and 

TNu v = Mxf f°  To (4.27) 

-2DMNu v° = k6 [°X6~l + (2)ktxa(2)k#l u 

+ + [, j) + .} + 

+ ½(K 2 + D ) k ~ ' k  "~ + ~(K 2 - D) 'kx~k v° (4.28) 

Tx -=- T x J  (4.29) 

Thus the Einstein connection representing the equation of motion (2.2) is non- 
unique to the extent of the addition of a third-rank tensor (Txuv), skew in its 
first two indices, which is specified in terms of an arbitrary vector by (4.27) 
with (4.28). 

In Einstein's unified field theory, one of the field equations is the require- 
ment that the torsion vector of the connection must vanish. If this condition 
is imposed on the Einstein connection representing the equation of motion 
(2.2), then under the conditions specified above that connection is unique: 
Ta must equal -Sa, so that, using (4.24), 

T,~¢ u = - M @  Ua Sa (4.30a) 

-1  '" 1 8 - r ~  - ~mM@Ua(Sar + 7 R ~ S  ~ )k ue (4.30b) 

4.4. The Skew Part o f  the Fundamental Tensor. The symmetric part of the 
fundamental tensor has been taken to be the metric tensor, but little has been 
said about (kuv). In this subsection some equations that (kuv) must satisfy will 
be derived. 

A number of theorems will now be stated: First (Hlavat3~, 1958, Theorem 2.3) 

2Swuv = Kwuv - 4Uavlukwl ~ (4.31) 

where 

Kw#v -~ gvu;w + gwv;u + &omv (4.32) 
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Second (Burman, 1971a) 

kpv;o + 2kl~U~plp = 2So[vp] (4.33) 

Third (Hlavat2?, 1958, p. 61), 

ku~,,o + lq,,o,p + kpu,~, = -2(Spvp + Svpu + Sour) (4.34) 

Fourth (Hlavat:~,, 1958, p. 67) 

Sx = kx~;a + 2Uc~kx a - UC~xka~ (4.35) 

where Up -~ Uaau. 
Replace (4.18) by 

S,~# p = -½ BajcUauo + Tc~# p (4.36) 

where (T,~ p) has been defined above. Equations (4.17) and (4.36) give 

Ux = ½ Bxou ° (4.37) 

and 

SX_ 1,, r.ro. + T~, (4.38) - - - ~  DK.rr~ ucs  

respectively; note that (U~,) is proportional to the effective 4-force acting on 
the particle. Substituting (4.17) and (4.36)into first (4.31) and then (4.33) 
results in 

kvu;w + kwv;u + kwu;v = 2(Bp~u[u + BIu~Uu)k~l ~ - B~u[G~ua + 2T~uv (4.39) 

and 

kp~; o + kt~(BulC~Up + Bo~u~] ) + Bo[vkpl°ua = 2To[up] (4.40) 

respectively. Substituting (4.36) into (4.34) gives 

+ kpp,,, + = + B,,p  + 8,,pkp' )uo 

- 2(Tpvp + Touz, + T~,pp) (4.41) 

Substituting (4.17), (4.37), and (4.38) into (4.35) gives 

ka~;a + B~°u~rk~ - B(xC~ucr)kc~Cr + ½Baokarur = Tx (4.42) 

Equations (4.39)-(4.42) are four partial differential equations relating the skew 
part of the fundamental tensor to the physical quantitiesm, (up), (Spu), and 

(RIVfP~eU'~ torsion vector is required to vanish, then (4.42)reduces to 

kx~;a + Baau°k~ - B(ffu~r)ka ° = 0 (4.43) 

5. Con formally Flat Space-Times 

In a conformally flat space-time, guy can be expressed as e%tuu where (r2uv) 
is the metric tensor of flat space-time and ff is a function of the x u. Also 
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~etrov, 1969, Section 34) 

R ~ 8  a 1 1 ar 

+ rl~a~[~(~,~ 1,~ 1 - ~ , ~ l  ~ ,~)  (5 .1)  

With (5.1), using the skew symmetry of (S'W), 
1 6 1 a 1 ,cr 

- - ~ , o ~  & e  ~ R ~  s~ = (~,o,l~ ~',o0,I~)Sel (5.2) 

This gives, using the condition (2.1), 

~ R ~ S ~  u -½(~,o~,~ - ~,~,~)SJue (5.3) 

-hence (2.2) is specialized to conformatly fiat space-times. If 

~,~,o = ½~,c~,o (5.4) 

then the part of the effective 4-force that depends explicitly on the Riemann- 
Christoffet tensor vanishes. 

The equation of motion (2.2) depends explicitly on the curvature tensor, 
and it is of interest to compare this dependence with that in another equation 
of motion that involves the curvature tensor. DeWitt and Brehme (1960)and 
Hobbs (1968a, b)investigated the motion of a nonspinning charged particle 
in an electromagnetic field in a Riemannian space of arbitrary hyperbolic 
metric, with the effect of electromagnetic radiation reaction included. The 
resulting equation of motion consists of the generally covariant form of the 
Lorentz-Dirac equation, together with extra force terms. The extra terms arise 
from fields that originate at the charge and are propagated back by the scattering 
effects of the space-time curvature: Huygen's principle fails in curved space- 
time. The force term found by DeWitt and Brehme is nonlocal in time, but does 
not depend explicitly on the curvature tensor; the term found by Hobbs contains 
the Ricci tensor. So the equation of motion contrasts with (2.2) which involves 
the full Riemann-Christoffel tensor. For the DeWitt- Brehme-Hobb s equation, 
the force term found by DeWitt and Brehme vanishes in conformally fiat space- 
times; that found by Hobbs vanishes in conformally flat space-times satisfying 
(5.4). So in conformally fiat space-times obeying (5.4), the curvature tensor, in 
its full or contracted forms, does not explicitly enter either the DeWitt-Brehme- 
Hobbs or Papapetrou-Pirani equations of motion: The equations have the same 
forms as in Minkowski space. 

Conformally flat spaces that satisfy (5.4) have been discussed by Laugwitz 
(1965, Section 12.5). When (5.4) is satisfied, (5.1) becomes 

Rce~.r~ = 2Kgcel.rgsl~ (5.5) 

where 

X = - ~ g ~ , ~ ¢ , r  (5.6) 

- the  Riemann-Christoffel tensor has the form for a space-time of constant 
Riemannian curvature K; in general relativity, the space-time must therefore 
be de Sitter space (Synge, 1960, p. 256). 
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Using (5.2), equations (3.11) and (3.12b) become 

. . . .  ~¢,o~,i~)s.l - k ~,o~ '%.]  ue 
c~3 m (5.7) 

and, using the condition (2.1), 

-1 
& = ~m [sx~ + (<o,lx - ½~,~,l~)s~l°] u~ (5.8) 

If (5.4) is satisfied, then 

{/~}-l('c~--¼~,ot)'°S~U)u[~ (5.9) 
A~u~ = c~3 

and 
--1 .. 

AX = ~m S~rur (5.10) 

Using (5.2), equations (4.23) and (4.24) become 

{ } 1 1 t.to # 1 [~(d ~ + ~(~,o,(o~ . . . .  ~ ,o~, (~)s  D~u ~ . m 

½(~/,o,# -- 1 ,bt ~7__ 

1 
+ [#c~ e + (~),Cr,[ce 1 o - -  - - a ~ , o ~  & e l k  Ur ( 5 . 1 1 )  2m 

and 

= 1 o 

If (5.4) is satisfied, then 

{ } (g(~ ¼~,o~,o ~,,,1 .. 
1 & . ) u e ) + ~ ( &  ~ , ,,, _.~ 

. . . .  4~ ,o¢  So~)k Ur 
D'~u e = a3 m 

(5.13) 

and 

1 (Sar - ¼t),o~'°Sc~r)kr~u~ (5.14) 
&=Urn  

Using (5.2), equation (4.30b), which is valid if the torsion vector of the 
Einstein connection is chosen to vanish, becomes 

- -  I O 1 , O  Tc~U=~IM~"'r[S~,s +(~9,o,[v ~,ot~,[-y)Ssl -a~ ,o~  S-rsl[c6eue (5.15) 
z m  
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If (5.4) is satisfied, then (5.15) reduces to 

- 1  .. 

T~j a = ~mMa~Uv(Sv~ - ¼ ~,o~'° Sv6 )kS"ue 

223 

(5.16) 

6. Concluding Remarks 

Hlavat~ built his treatment of Einstein's unified field theory on three basic 
principles. Principle A asserts that the unified field of gravitation and electro- 
magnetism is determined by 16 potentials, which are the components of a real 
second-rank nonsymmetric tensor field (guy); the symmetric and skew parts are 
denoted by (huv) and (kuv). This principle relates to the algebraic structure 
imposed on the four-dimensional space-time by (guy): Hlavat~ classified space- 
time, or either of the tensor fields (g~v) and (k~v), into first, second, and third 
classes, according as none, two, or all four of the eigenvalues of (k~ v) vanish. 

Principle B asserts that the potentials &v determine the curvature and torsion 
of space-time: The tensor (guy) imposes a structure on the differential geometry 
of space-time through the connection P, which is defined in terms of (&,v) by 
the set of 64 equations 

gzz+~_.o = 0 (6.1) 

For a given fundamental tensor (&u), the set (6.1) can have no solutions, 
a unique solution, or more than one solution. In four dimensions, with (g,u) 
real and with (huv) having the signature (+++-), necessary and sufficient 
conditions for the existence and uniqueness of a solution of (6.1) are (HlavatSq 
1958) g 4= 0 and g(g - 2) ~ 0 for the first and second classes, respectively, 
where g =- det(g~v)/det(h,v); for the third class, there is always a unique solution. 
HlavatS* solved (6.1) to obtain P in tensorial form, in terms of the g,,v and 
their first covariant derivatives with respect to the Christoffel connection of 
(h~,v); he investigated all three classes including singular cases. 

Principle C asserts that (&,v) is a solution of a system of differential equa- 
tions, the field equations, which impose conditions on the curvature and 
torsion of space-time. The procedure is to substitute a solution of (6.1) 
into the definition of the curvature tensor (R~o~x v) of P, thus obtaining 
(R~o**x v) in terms of the &v and their first two derivatives. The tensor (&v) 
is then to be obtained from the field equations, as is the identification of the 
gravitational and electromagnetic fields in terms of the &w. Various sets of 
possible field equations have been proposed, including several sets that have 
in common the equations 

Ca = 0 (6.2) 

The motion of a spinning test particle in the Riemannian space-time of 
general relativity, with nongravitational fields neglected, can be described by 
the geodesic equation of an affine connection. The connection is the sum of 
the usual Christoffel connection and a tensor that depends on the Riemann- 
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Christoffel curvature tensor and on the particle's mass, 4-velocity, and spin 
tensor. In this paper, the connection has been chosen so as to satisfy the basic 
geometrical principle (6.1) of  the Einstein-Schr6dinger unified field theory. 
The symmetric part of  the fundamental tensor has been put equal to the 
metric tensor of general relativity, and attention has been restricted to fields 
(kuv) of the first class; (kuv) has not been specified, but differential equations 
relating it to physical quantities have been found. The resulting Einstein 
connection has been found to be arbitrary to the extent that the torsion vector 
can be freely specified. In the unified field theory, the field equations (6.2) 
state that the torsion vector of the connection vanishes. If this condition is 
imposed on the Einstein connection obtained here, then that connection is 
unique. 

The problem of satisfying further field equations, and that of identifying 
(k#v)in terms of physical quantities, remain to be investigated, as do the 
problems of dealing with fields (kuv) of the second and third classes and 
singular cases and of removing the specification that the symmetric part of  
the fundamental tensor must be the metric tensor of general relativity. 

The Einstein connection obtained in this paper is not an external property 
of space-time, independent of  the test particle, but depends on the particle's 
mass, 4-velocity, and spin tensor. This may be physically interpreted to mean 
that the particle generates, on its own world-line, a modification of the space- 
time geometry. This interpretation has been suggested by Quale (1972) and 
Cohn (1972), who investigated the geodesic representation of the motion of 
a particle moving under electromagnetic and other forces. The dependence 
of the connection on the 4-velocity of the particle concerned suggests the 
problems of formulating the theory in phase space and Finster space. 
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